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Analysis of Nonlinear Termination Networks for

Coupled Lossy and Dispersive Transmission Lines

George W. Pan, Gaofeng Wang, and Barry K. Gilbert

Abstract— Based upon an algorithm described in a separate paper
[1], multiple transmission lines with skin effect losses and dispersive

characteristics were analyzed by tbe volume equivalent principle, and

the scattering matrix [So] and characteristic impedance matrix [Zoo] of
the transmission lines were obtained. The [.%] and [ZO (w)] were then

transformed by the inverse FFT into the time domain. The scattering
matrix representation is multiplicative in nature, which leads to the time

domain formulation as a set of convolution integrals.
Instead of attempting to solve a set of conpled convolution integral

equations by the multivariable Newton-Raphson method, which may
occasionally be unstable, we generated a set of object functions and

applied a multivariable optimization technique, referred to as the mod-
ified Levenberg-Marquardt algorithm, to attain the solutions. The new

method, which is quite general, reduces to the special ‘cases derived in

many previous publications.

I. INTRODUCTION

Coupled lossy and dispersive transmission lines connected to

active devices are commonly found in the packaging of high-

speed, high density digital electronics. These devices, including

&lodes, transistors, voltage limiters and so forth, acting as sources

or terminations, have their output or input impedances as functions

of impressed voltages, and are nonlinear in nature.

At the system clock rates (up to 2 GHz) and analog bandwidths (up

to 10 GHz) for which metal-organic and ceramic multichip modules

(MCMS) are being designed [2], [3], it is absolutely necessary to

be able to model the propagation of wavefronts through groups

of tightly coupled, lossy and dispersive stripline and/or microstrip

interconnects, to assure that waveform integrity will be preserved

when the actual structures are fabricated and placed into service.

Previous analyses of the problem of modeling the dispersion

properties of transmission lines include the spectral domain method

[4], and the Fourier transform method [5], among others, Nonlinear

terminations have been treated by the harmonic balance technique [6],

and the time domain approach [7], Using Y-parameters, Djordjevic

etal. [8] introduced augmented networks with negative resistors to

match the line impedances. Schutt-Aine and Mittra [9] solved the

single line problem by employing S-parameters with a fixed reference

impedance on the structure.

Gu et al. [10] improved the S-parameter approach, discarded the

negative networks and eliminated the fixed reference impedance.

These authors discussed general cases of coupled lossy and dispersive

transmission lines with nonlinear loads. Nevertheless, the (semi-

empincal) dispersion formtda (Equation 15 iQ [10], which has been

verified to be accurate to the terahertz range [1 l]), is valid only for a

single microstrip line, and the Newton-Raphson method as employed

in [10] may be unstable, particularly when multiple variables are in-

volved. Recently, Mehalic and Mittra [12] expanded the S-parameter

approach in conjunction with an iteration-perturbation method [13]

so that multiple lines can be treated. However, because resistive
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Fig. 1. Schematic diagram of a generalized 2N-port transmission line system

showing current flow conventions,

line losses were not handled properly in the iteration-perturbation

method, the agreement between simulation and measurement was

not extremely accurate [1]. In this paper we present a new approach

based upon the improved S-parameter method. Improvements to

Gu’s method [10] are described in this paper, i.e., the use, of

an unconstrained optimization of the sum of squares of nonlinear

functions [14], a more detailed formulation of the scattering matrix

for the multiple line case, and a complete derivation of the multiple

line networking formulas.

II. FORMULATION

2.1 Derivation of Time-Domain Nonlinear Equations

Consider a 2iV-port transmission line system consisting of N

coupled lossy and dispersive transmission lines, as illustrated in

Fig. 1. The incident wave vector IA(u)) and reflected wave vector

Ii?(w)) at the terminal ports can be represented as the superposition

of port voltage and current vectors IV(W)), and II(w)) [15]:

IA(LI)) = ;{ IV(LJ)) - [ZO(W)]II(UJ))} (1)

Ill(w)) = ;{ IV(U)) + [ZO(W)]II(W))} (2)

where [ZO (w)] is the characteristic impedance matrix of 2N x 2N,

which will be defined and formulated later in Section 2.3. P{ote

that the minus and plus signs in the second terms of the above

equations may simply be reversed if the directions of current flow

are defined oppositely. The incident and reflected voltage waves are

related through the scattering matrix [S(U)] by:

III(u)) = [S(W)] IA(W)). (3)

Adding (1) and (2), we have:

[V(w)) = IA(LJ)) + II?(w)). (4)

By takhg the Fourier transform of (2), (3) and (4), we have the

time-domain relations:

‘b(t))=+[’v’’))+l’dT’z’’(’-T)’’i(T))l ‘5)
p(t)) = j’ d7[h(t - 7-)]la(7)) (6)

Iv(t)) = l:(t))+ lb(t)) (7)

where Iv(t)), Ii(t)), la(t)), lb(t)), [h(t)]and [,ZO (t)] are, respectively,

the inverse Fourier transforms of IV(W)), II(u)), IA(LJ)), IB(oJ)),
[S(w)] and [ZO (w)]. Note that [h(t)]is the system function matrix of

2N x 2N of the transmission line system, which, by nature, is linear.

Therefore, the convolution integraf holds. The termination conditions

relate the port currents with the voltages as:

Ii(t)) = If(\lJ(t)))) (8)
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where 1~( Iv( t)))) is, in generaI, a nonlinear vector function of Iv(t) ),

such as the 1 – V curves of individual devices. Incorporating the

termination conditions (8), we can solve (5), (6) and (7) for four

unknowns: Iv(t)). Ii(t)), la(t)) and lb(t)).

In this paper, we are most interested in the voltage waveforms

Iv(t)).Note that the nonlinearity is mainly introduced by the nonlin-

ear termination conditions of (8).

2.2 Unconstrained Optimization Techniques

Instead of attempting to solve a set of coupled integral equa-

tions, namely, (5)–(8) by the multivariable Newton-Raphson method,

which may be numerically unstable, we have utilized optimization

techniques. Combining the basic equations (5), (6), (7) and (8), we

obtained a set of equations of the port voltages:

J

t

dT[h(t – T)]{l?r(T))
o

- MIV(T))))} = ldlq~)))) (9)

and lq( Iv(t)))) represents a vector function of Iv(t)) given by

Idlv(t)}))

“[V(’))+l 1
dT[.zo(t – T)]lf(l?J(T)))) . (10)

To solve the port voltages Iv(t)) from (9), we applied the modified

Levenberg-Marquardt algorithm with a finite difference Jacobian [ 14],

which minimizes the sum of squares of nonlinear functions. From (9),

the functional to be minimized is set up as

Vm,n(lv(t)))

Ill

t
—— dT[ll(t – 7)]{ IV(T))

o

- 19(MT))))} - ldlv(t))))~f’
2N ~

=~ ~~
Cz?-hmk(t – T){tJk(T)

—
12

– w(p(T)))} – on(lv(~))) (11)

where II . II denotes the norm of a vector of dimension 2N, and

kl(bJ(t)))) is given by (10). By minimizing the functionalof(11),
the problem will be completely solved, provided [h(t)] and [z. (t)] are

known. In this paper, the scattering matrix [S(U)] and characteristic

impedance matrix [Z.(w)] were obtained directly from the volume

equivalent principle solutions [1] or from measurements; thus, it is

only necessary to take their inverse Fourier transforms. However, in

many cases the inductance, capacitance, resistance, and conductance

matrices [L], [C”], [R] and [~ are given. In the next section we

will discuss a more general case of the derivation of the scattering

matrix [S(ti)] and the characteristic impedance matrix [ZO(u)] from

the inductance, capacitance, resistance and conductance matrices

[~], [C], [R] and [G] as functions of frequency.

2.3 Determination of Frequency Domain Parameters

The voltages and currents on multiconductor transmission lines can

be written as follows (the factor eJ‘t is suppressed) [16]:

Iw(:)) = [iW,]/e(z)) (12)

Ii(z)) = [Mr]lj(:)) (13)

where z is the direction of wave propagation along the lines, and

the vectors Ie(z) ) and Ij(z)) are the voltages and currents of the

eigenmodes, respectively; [iWV] and [iWI] are the voltage eigenvector

matrix of [ZZ][YC] and current eigenvector matrix of [Yc] [Zi],
respectively. [2[] and [Yc] are given by

[z’] = [q - j[R]/u (14)

[Yc] = [c] - j[q/u. (15)

It can be shown that, with the proper choice of eigenvectors:

[MI] [lfv] T = [u] (16)

where [u] is the identity matrix. The voltages and currents of the

eigenmodes can be expressed by

Ie(z)) = [lil(f)(z)]lr) + [E(b) (z)]lp) (17)

1~(~)) = [E(f)(:)][zd]-’lr’)

- [IN(z) ][zd]-’ Ip) (18)

where

[~(f)(z)] =diag{e-7’Z, e-~’z,... ,e-~.N’} (19)

[E(b)(z)] =diag{e~’(z-’), ~T2(=-1),

. . . , ~?N(2–1)
} (20)

represent the forward and backward traveling waves, respectively, and

[Zd] = diag{Z~. Z~,... ,ZN} (21)

where y~ and Z~ = _ are respectively. the propagation
constant and characteristic impedance of the rnth mode. 1 is the

coupling length of the multiconductor transmission lines. IT) and /p)
are constants to be found from the boundary conditions. ~~ can

be found from eigenvalue ~ ~ of [Z1][YC] or [Yc] [Zz] ‘by Tm =

.lUJm. Z~ and Y; are, respectively, the mth diagonal elements of

the decoupled (diagonalized) impedance matrix [Zj] and admittance

matrix [Yj] which can be calculated from the transformation matrices

[iWV] and [A41] as follows:

[Zi] = [iWI] ‘[Z’][M,] (22)

[Y:] = [A!fv]~y”][MtJ] (23)

Let z = O and 1; we can obtain the port voltages and currents

Ivn) = Iu(o))

= [A.!f”][r) + [lkfv][E]lp)

Ivf) = 17J(1))

= [Mv][lqlr)+ [A.!fv]]p)

Iln) = -[i(o))

= -[M,] [Z.]-l IT)+ {M,][q[zd]-’ 1P)
pf) = Ii(l))

= [MI] [E][zd]-’ /7-)- [M,] [z,]-’ Ip)

where [E] = [E(f) (1)] = [E(b) (0)], and subscripts n and f denote

the near and far ends, respectively. Combining the above equations

and evaluating the port voltages in terms of the impedance matrix

and the port currents,

where

we have:

IV) = [Zlll) (24)

v) = [lv,,)~, lvf)~]~
p)= [/In)~, /If)~]~
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The impedance matrix is given by

[z] = [FV][FI]-’

where

[

Pfvl [~vl[~l
[~vl = [&fV][E] WV]

1

[

-[M,] [Z,]:, [M,] [E][Z,]-’
[F’] = [M,] [E][Z,] 1-[M,] [Z, - d]-’ “1

The characteristic impedance can be shown to be

[20] =
[

[Mv][zd][MI]-’ [0]
[0] 1[Mv][z,][iw,]-’ ‘

Combining (24) and (25), (1) and (2) we obtained

1
1A) = [~~;;~;; .

‘B)=[wwl

(25)

(26)

(27)

(28)

The above equations imply that [A) and IB) represent, respec-

tively, the incoming and outgoing waves at the terminal ports.

Therefore the above c~oice of the characteristic impedance matrix

[20] is reasonable.

Substituting (24) into (1) and (2), evaluating Ii?) in terms of 1A)
and comparing with (3), one obtains

[s(w)] = ([z(w)]+ [Z,(u) ])([z(cd)] - [z,(w)])-’. (29)

Now substituting (25) and (26) into (29), the scattering matrix is

found as follows:

[MV][E][MV]-’
[0] 1

(30)[sl = [ [A4V][$LV]-’

2.4 Evaluation of Time Domain Parameters

Rewriting the scattering matrix (30) as:

[s(w)]=
[

[0] [s,(d)]
[s,(w)] [0] 1

(31)

where

[s,(w)] = [Smn(cd)]rwv= [MV][E][MV]-l. (32)

It can be shown that the matrix element S~~ (w) takes the

following form:

Sm.(d) = ~ S&n(u) e-’pk(”)l (33)
k=l

where bk is the imaginary part of ~k. To deal with the singularity

of the inverse Fourier transform of Sm.(w) due to

~lmm Sm.(w) # O

we separate Sm.(w) into two parts, as in [10]:

sm.(w)= SL.(UJ)+ Sm?z(cb)

where

N

N

Sm.(m) = ~S&n(co)e-’p&(m)u[
k:]

(34)

1
1

Obviously, Smn (CO) can be inverse transformed analytically to

obtain a series of impulse functions which correspond to the time

delays of the modes, and S~. (w ) is well-behaved and integrable

(S&n (ti) approaches O as u approaches infinity). The latter expres-

sion represents the contribution of [S(w)] due to dispersion. The

inverse Fourier transform of S~n (w) is:

N

hmn(t) = h~n(t) + ~qt – n.)s~n(m) (35)
k=l

where h’mn (t) is the inverse Fourier transform of S~. (w ), and

m = pk (co) l/@ = l’J’~(co)Z iS the time delay of the kth mode.
We rewrite the characteristic impedance matrix as:

[
[z,(u)] = [z”~y [0]

[ZCI,(UJ)]1
(36)

where

[Z,,(w)] == [ZO~n (d)]~xN = [MV][Zd][iW1]-l (37)

The calculation of :omn (t) is similar to that of h~~ (t). Separating

ZOm. (w ) into two parts,

Z“mn(ul) = Z:mn(w) + .zOmn(m) (38)

where

Z&mn (W) = Zomrl (co)
[

Zomn(w) _ ~

Z“,nn (m) 1

The inverse Fourier transform of ZO~n (w) becomes:

ZOmn(t) = Zimn(t) + 6(t)zomn (00) (39)

where ,&. (t) is the inverse Fourier transfomn of Z&m. ( w).

III. NUMERICAL EXAMPLES

To demonstrate the effectiveness and generality of the new method

described in this paper, five examples will be presented. In the first

four, we will compare our results with data from the literature;

agreement of the results of the new method with the data from four

papers employing four different algorithms are all quite impressive.

The last example deals with a very general case of three coupled

lossy and dispersive microstrips with nonlinear loads. Laboratory

experiments are being established to yield measured data to compare

with the calculated results.

Example 1. A single dispersive microstrip line terminated with a

nonlinear load was discussed by Gu et al. as Example 1 in [10]. We

repeated the simulation with the same data (geometry, source and

termination conditions, etc.); Fig. 2 compares our results with Fig.

6 of [10]. Agreement of results as presented in these two figures

is good, except that the secondary reflection at the far end of the

line is larger in our results, which appears to be more reasonable

because the line is assumed lossless and the source impedance is not

perfectly matched with the line.

Example 2. A square pulse propagating along a dispersive mi-

crostrip line with a matched load was studied by Veghte and B alanis

[5]. Using the same data given in their Fig. 4, our method generated

the same results. The comparison of our results with those of Veghte

is shown in Fig. 3. The agreement between the two sets of results

is excellent.

Example 3. To compare our results with laboratory measurements,

we employed an example of a lossless stripline terminated with
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Fig. 2. Comparison of simulation results of single dispersive microstrip

transmission line using Gu’s method and the improved S-parameter network-

ing method. Left panel: Gu’s results. Right panel: results obtained with this

method.
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Fig. 3. Comparison of simulation results of 10SSY dlsperswe microstrip
transmission line using Veghte’s method and the improved S-parameter
networking method. Left panel: Veghte’s results. Right panel: results obtained
with this
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Fig. 4. Comparison of measured results from single microstrip transmission

line from Schutt-Aine and Mlttra, and simulations of the same line using

the improved S-parameter networking method. Left panel: measured line

responses. Right panel: simulated results obtained with this method.

advanced Schottky TTL inverters, as depicted in Fig. 7 of Schutt-

Aine and Mittra [9]. in which the transmission line is lossless and

dispersionless, and the device has been simplified but its nonlinearity

retained. We used all the information presented in [9], including

electrical and geometric data, and the nonlinear I-t’ curves for a

simplified model of a TTL gate (i.e., a nonlinear back biased diode

in parallel with a capacitor) provided in [9], and duplicated the wave-

forms and compared them with the photographs in Fig. 4. Overall,

good agreement between the two sets of results is demonstrated.

Example 4. In this example we compared our results with the

numerical example of Djordjevic et al. in [8], where the two far-

end loads are nonlinear, and the two transmission lines are lossy

and coupled. The frequency dependent behavior was simplified by

considering only skin effect loss, with the resistance proportional

to the square root of the operating frequency. This simplification

may not be accurate especially for transmission lines whose cross

sectional dimensions are on the same order of the skin depth, as a

result, dispersion was not fully addressed. Using Djordjevic’s line

— N,,, End

. . . . . . . . . . . . . . . .%, End

DJORDJEVICS METHOD

IMPROVED S-PARAMETER NETwORKING METHOD

Fig. 5. Comparison of simulation results of coupled 10SSY,dispersive mi-
crostrip transmission lines using DjordJevic’s method and the improved
S-parameter networking method. Upper panels: Djordjevic’s results. Lower
panels: results obtained with this method.

parameters, our results agreed very well with Djordjevic et al., as

illustrated in Fig. 5.

Example 5. In all the previous examples, the combined effect of

three factors, namely, load nonlinearity, line coupling and dispersion

has never been investigated. In fact, among the three factors, only

one or two have been studied at a time. Therefore, we present

here a complete analysis of a total combination of all three factors.

First, we needed a set of data that reveals frequency dependent

characteristics (dispersion, frequency dependent losses and so on)

of a set of coupled transmission lines. This was accomplished by

the volume equivalent principle approach in a separate paper [1],

where the S-parameters and the characteristic impedance matrix of

the three coupled microstrip lines depicted schematically in the upper

two panels of Fig. 6 were obtained.

It should be noted that the structure which was simulated for this

example is a section of an actual passive test coupon designed in the

Mayo laboratory, fabricated by Honeywell Corporation using their

Thin Film Multilayer (TFML) copper-polyimide multichip module

process, and presently undergoing extensive testing at Mayo [2]. The

S-parameter and characteristic impedance matrix data derived from

the Honeywell test coupon simulations, taking coupling, losses and

dispersion into account, were then utilized in our nonlinear loads

program. A complete picture of waveform dktortion and crosstalk

as a result of the combined effect of load nonlinearity, line loss,

dispersion and coupling, are illustrated in the three lower panels of

Fig. 6. No comparison from the literature is available at present;

however, measured data from our own laboratories will be available

in the near future. Finally, Fig. 7 shows the simulated S-parameter

data from the first step of this process based upon the structural

parameters of the Honeywell coupon. and S’-parameters measured

with the HP 85 10B network analyzer.

IV. CONCLUSIONS

In this paper, a technique based upon an improved S-parameter

and unconstrained optimization method has been described for the

analysis of the wavefront propagation characteristics of coupled Iossy

and dispersive transmission lines terminated with nonlinear loads. A
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Fig. 7. Simulated and measured scattering parameters and structural fea-
tures for copper-polyimide Thin Film Multilayer (TFML) multichlp modul~
simulations based on results of Wang et al. TFML coupon fabricated by
Honeywell SSEC; measurements with HP 8510B network analyzer and
Cascade microwave probes.

modal analysis of multiple transmission lines is also discussed. As

a more general and effective method, this approach generates the

results of many previous methods as special cases.
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