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Analysis of Nonlinear Termination Networks for
Coupled Lossy and Dispersive Transmission Lines

George W. Pan, Gaofeng Wang, and Barry K. Gilbert

Abstract— Based upon an algorithm described in a separate paper
[1], multiple transmission lines with skin effect losses and dispersive
characteristics were analyzed by the volume equivalent principle, and
the scattering matrix [Sw] and characteristic impedance matrix [Zow] of
the transmission lines were obtained. The [Sw] and [Z((w)] were then
transformed by the inverse FFT into the time domain. The scattering
matrix representation is multiplicative in nature, which leads to the time
domain formulation as a set of convolution integrals.

Instead of attempting to solve a set of coupled convolution integral
equations by the multivariable Newton-Raphson method, which may
occasionally be unstable, we generated a set of object functions and
applied a muitivariable optimization technique, referred to as the mod-
ified Levenberg-Marquardt algorithm, to attain the solutions. The new
method, which is quite general, reduces to the speclal cases derived in
many previous publications.

- . INTRODUCTION

Coupled lossy and dispersive transmission lines connected to
active devices are commonly found in the packaging of high-
speed, high density digital electronics. These devices, including
diodes, transistors, voltage limiters and so forth, acting as sources
or terminations, have their output or input impedances as functions
of impressed voltages, and are nonlinear in nature.

At the system clock rates (up to 2 GHz) and analog bandwidths (up
to 10 GHz) for which metal-organic and ceramic multichip modules
(MCMs) are being designed [21, [3], it is absolutely necessary to
be able to model the propagation of wavefronts through groups
of tightly coupled, lossy and dispersive stripline and/or microstrip
interconnects, to assure that waveform integrity will be preserved
when the actual structures are fabricated and placed into service.

Previous analyses of the problem of modeling the dispersion
properties of transmission lines include the spectral domain method
[4], and the Fourier transform method [5], among others. Nonlinear
terminations have been treated by the harmonic balance technique [6],
and the time domain approach [7]. Using Y -parameters, Djordjevic
et al. [8] introduced augmented networks with negative resistors to
match the line impedances. Schutt-Aine and Mittra [9] solved the
single line problem by employing S-parameters with a fixed reference
impedance on the structure.

Gu et al. [10] improved the S-parameter approach, discarded the
negative networks and eliminated the fixed reference impedance.
These authors discussed general cases of coupled lossy and dispersive
transmission lines with nonlinear loads. Nevertheless, the (semi-
empirical) dispersion formula (Equation 15 in [10], which has been
verified to be accurate to the terahertz range [11]), is valid only for a
single microstrip line, and the Newton-Raphson method as employed
in [10] may be unstable, particularly when multiple variables are in-
volved. Recently, Mehalic and Mittra [12] expanded the S-parameter
approach in conjunction with an iteration-perturbation method [13]
so that multiple lines can be treated. However, because resistive

Manuscript received December 5, 1991; revised July 27, 1992. This work
was supported under contract N66001-89-C-0104 from the Naval Ocean
Systems Center.

The authors are with the Mayo Foundation, Special Purpose Processor
Development Group, Rochester, MN 55905.

IEEE Log Number 9205468.

n—> —D:rm

1<— <341

1 SR - “N+1
gm——b . . —DONem

m m< Nem < Nem N+m
w—p . | —D:zu .

<—— Hvoy * <a—
N N N 2N 2N

b

Fig. 1. . Schematic diagram of a generalized 2N -port transmission llne system

showing current flow conventions,

line losses were not handled properly in the iteration-perturbation
method, the agreement between simulation and measurement was
not extremely accurate [1]. In this paper we present a new approach
based upon the improved S-parameter method. Improvements to
Gu’s method [10] are described in this paper, ie., the use. of
an unconstrained optimization of the sum of squares of nonlinear
functions [14], a more detailed formulation of the scattering matrix
for the multiple line case, and a complete derivation of the multiple
line networking formulas.

II. FORMULATION

2.1 Derivation of Time-Domain Nonlinear Equations

Consider a 2N-port transmission line system consisting of N
coupled lossy and dispersive transmission lines, as illustrated in
Fig. 1. The incident wave vector |A(w)) and reflected wave vector
| B(w)) at the terminal ports can be represented as the superposition
of port voltage and current vectors |V (w)), and |I(w)) [15]:

|A(w)) = 3{IV(w)) = [Zo(w)]1(w))} (1)
[B(w)) = {IV(@)) + [Zo()]IT(w))} @

where [Zo(w)] is the characteristic impedance matrix of 2NV x 2N,
which will be defined and formulated later in Section 2.3. Note
that the minus and plus signs in the second terms of the above
equations may simply be reversed if the directions of current flow
are defined oppositely. The incident and reflected voltage waves are
related through the scattering matrix [S(w)] by:

|B(w)) = [S(w)]|A(w)). 3)
Adding (1) and (2), we have: ; ;
[V(w)) = |A(w)) + [B(w)). @

By taking the Fourier transform of (2) (3) and (4), we have the
time-domain- relations:

b0 =3[y + [ arlaoe— )]
bio = | " drlh(t = 7)la(r) ©
lo(6)) = a(8)) + b)) @

where |u(t)), 1E(£)), la(t)}, [6(£)}, [R(?)] and [z0(t)] are, respectively,
the inverse Fourier transforms of |[V(w)), [I(w)}),|A(w)),|B(w))},
[S(w)] and [Zo(w)]. Note that [h(%)] is the system function matrix of
2N X 2N of the transmission line system, which, by nature, is linear.
Therefore, the convolution integral holds. The termination conditions
relate the port currents with the voltages as:

li(£)) = £ (fo()))) ®
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where [f(|v(t)))} is, in general, a nonlinear vector function of |v(t)),
such as the I — V' curves of individual devices. Incorporating the
termination conditions (8), we can solve (5), (6) and (7) for four
unknowns: |v(1)). [§(¢)). |a(t)) and |b(2)).

In this paper, we are most interested in the voltage waveforms
[v()). Note that the nonlinearity is mainly introduced by the nonlin-
ear termination conditions of (8).

2.2 Unconstrained Optimization Technigues

Instead of attempting to solve a set of coupled integral equa-
tions, namely, (5)~(8) by the multivariable Newton-Raphson method,
which may be numerically unstable, we have utilized optimization
techniques. Combining the basic equations (5), (6), (7) and (8), we
obtained a set of equations of the port voltages:

/0 drlh(t — )] {[o(r)
~ la(o(m))} = law()))) ©)

and |g(|v(t)))) represents a vector function of |u(t)) given by

la(fo(t)))

= %[rv<t>>+ [ astaote = olison]. o

To solve the port voltages |u(¢)) from (9), we applied the modified
Levenberg-Marquardt algorithm with a finite difference Jacobian [14],
which minimizes the sum of squares of nonlinear functions. From (9),
the functional to be minimized is set up as

Vo (0())
/0 drlh(t - T {l(r)

~ la(lo(r)) - !qavu»»/';'

N [2N ¢
Z Z/ AT A (t — 7){vr(T)

m=1 |k=1Y0

Il

2

= aw([p(MN} = am(lu(t))) (11)

where || - || denotes the norm of a vector of dimension 2N, and
la(lv(t)))) is given by (10). By minimizing the functional of (11),
the problem will be completely solved, provided [k(t)] and [zo(t)] are
known. In this paper, the scattering matrix [$(w)] and characteristic
impedance matrix [Zo(w)] were obtained directly from the volume
equivalent principle solutions [1] or from measurements; thus, it is
only necessary to take their inverse Fourier transforms. However, in
many cases the inductance, capacitance, resistance, and conductance
matrices [L],[C],[R] and [G] are given. In the next section we
will discuss a more general case of the derivation of the scattering
matrix [$(w)] and the characteristic impedance matrix [Zo(w)] from
the inductance, capacitance, resistance and conductance matrices
[L],[C], [R] and [G] as functions of frequency.

2.3 Determination of Frequency Domain Parameters

The voltages and currents on multiconductor transmission lines can
be written as follows (the factor e’“? is suppressed) [16]:

lu(z)) = [My]le(z))
li(z)) = [M/]l5(=))

(12)
13)

where z is the direction of wave propagation along the lines, and
the vectors |e(#)) and [5(z)) are the voltages and currents of the
eigenmodes, respectively; [Mv] and [M] are the voltage eigenvector
matrix of [Z'][Y°] and current eigenvector matrix of [yejz1,
respectively. [Z'] and [Y*] are given by
(2'] = [L] - j[R) /v
[Y*] = [C] - j[G]/w.

It can be shown that, with the proper choice of eigenvectors:

M) = U]

(14)
(15)

(16)

where [U] is the identity matrix. The voltages and currents of the
eigenmodes can be expressed by

le(2)) =B (2)]Ir) + [E®(2)]lp) an
i(2)) =[EP(2)][Za] " Ir)
~ [E®))[Z24) 7 |p) (18)
where
[EY)(2)] =diag{e 7,672, .. TN} (19)
[E(b)(z)] — dia,g{en(:*l), 672(:—1),
_.!671\1(2—1)} 20

represent the forward and backward traveling waves, respectively, and
[Z4] = diag{Zy. Z2,- - . Z N} [#3))

where v, and Z,, = \/Z%,/Y,$ are, respectively, the propagation
constant and characteristic impedance of the mth mode. I is the
coupling length of the multiconductor transmission lines. |r) and |p)
are constants to be found from the boundary conditions. 7., can
be found from eigenvalue A, of [Z'][Y°] or [Y°][Z'] by ym =
JwvAm. Z5 and Y., are, respectively, the mth diagonal elements of
the decoupled (diagonalized) impedance matrix [Zfi] and admittance
matrix [¥'g] which can be calculated from the transformation matrices
[Mv] and [M/] as follows:

(23] = M) [2'][M1]
[Yi] = [Myv] Y ][My]

Let z = 0 and I; we can obtain the port voltages and currents

22
23

V) = [w(0))
= [My]lr) + [Mv][E]lp)
Vi) = lu(D))
= [Mv][E]lr) + [Mv]|p)
) = —[i(0))
= —[M][Z.] 7 |r) + [M][E][Z4] " Ip)
L) = lé(1))

= [M[E][Z4] " Ir) — [M1][Z4) " |p)

where [E] = [EF(1)] = [E®(0)], and subscripts n and f denote
the near and far ends, respectively. Combining the above equations
and evaluating the port voltages in terms of the impedance matrix
and the port currents, we have:

V) = [Z]|T) 24
where
V) =[v.)". vy )"

) = (1) " 1) TT"



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 3, MARCH 1993 533

The impedance matrix is given by

(2] = [Fv][Fi]™ (25)

where

_[ imy]
F= | el
_ [ Mz
P = | et
The characteristic impedance can be shown to be
_ [[Mv]Za][M] [0]
120) = [ o [MvnzduMI]—l} |
Combining (24) and (25), (1) and (2) we obtained
_ [1Mv]ir)
4= {[MV“P)].

_ | IMV][E]p)
1B) = [[Mv][E]M ]

[MV][E]]
[My]

[M/][E][Za} }I
—M[Zs—d)7 |

(26)

@7

(28)

The above equations imply that |A) and |B) represent, respec-
tively, the incoming and outgoing waves at the terminal ports.
Therefore the above choice of the characteristic impedance matrix
[Zo] is reasonable.

Substituting (24) into (1) and (2), evaluating |B) in terms of |A)
and comparing with (3), one obtains

[S()] = ([Z(w)] + [Zo(@)D([Z(w)] = [Zo(w)]) .

Now substituting (25) and (26) into (29), the scattering matrix is
found as follows:

(29)

- [0] [Mv][E|[Mv]™!
[P S e
2.4 Evaluation of Time Domain Parameters
Rewriting the scattering matrix (30) as:
[S(w)] = [[SE?L)] [Sl[(()au)]] (31)
where
[S1(W)] = [Smn(W)lvxn = [MV][E][Mv] ™. (32)

It can be shown that the matrix element Spn.n(w) takes the
following form:

N
Srnn(w) = Z sfnn(w)e—mk(u)z

k=1

(33)

where 8 is the imaginary part of vx. To deal with the singularity
of the inverse Fourier transform of Sy, (w) due to

lim Smn(w)#0
we separate S, (w) into two parts, as in [10]:
Sean(w) = S:nn (W) + Smn (OO) (34)

where
N
Shin(w) = 3 8K, (co)e 9Pkl
k=1

. ann(w) e IBr(W)=Br(ca)lt _
Skin(00)

N
Smn(00) = Y Shin(o0)e P!
k=1

Obviously, Simn(co0) can be inverse transformed analytically to
obtain a series of impulse functions which correspond to the time
delays of the modes, and S.,,(w) is well-behaved and integrable
(S7n{w) approaches 0 as w approaches infinity). The latter expres-
sion represents the contribution of [S(w)] due to dispersion. The
inverse Fourier transform of Sy, {(w) is:

N
Fomn (8) = o () + D 8(t = 75) S (00)
k=1

(35)

where h!,.(t) is the inverse Fourier transform of S,,,(w), and
e = Br(oc)l/w = B (00)l is the time delay of the kth mode.
We rewrite the characteristic impedance matrix as:

_ | [Zo1(w)] [0]
2= |5 ] 69
where
[Zo1(w)] = [Zoma (W)Inxn = [MV][Z4][M/]7} 37

The calculation of Zomsn () is similar to that of k. (¢). Separating
Zymn(w) into two parts,

Zomn(w) = Zomn(w) + Zomn(00) (38)
where
! — ZOmn (w)
Z()mn (W) = Zomn (OO) l:Z()mn (00) 1
The inverse Fourier transform of Zg,.»(w) becomes:
20mn (1) = 20mn (£) + 6(t) Zomn (00) 39

where 2y, (t) is the inverse Fourier transform of Z{,,,,(w).

III. NUMERICAL EXAMPLES

To demonstrate the effectiveness and generality of the new method
described in this paper, five examples will be presented. In the first
four, we will compare our results with data from the literature;
agreement of the results of the new method with the data from four
papers employing four different algorithms are all quite impressive.
The last example deals with a very general case of three coupled
lossy and dispersive microstrips with nonlinear loads. Laboratory
experiments are being established to yield measured data to compare
with the calculated results.

Example 1. A single dispersive microstrip line terminated with a
nonlinear load was discussed by Gu ef al. as Example 1 in [10]. We
repeated the simulation with the same data (geometry, source and
termination conditions, etc.); Fig. 2 compares our results with Fig.
6 of [10]. Agreement of results as presented in these two figures
is good, except that the secondary reflection at the far end of the
line is larger in our results, which appears to be more reasonable
because the line is assumed lossless and the source impedance is not
perfectly matched with the line.

Example 2. A square pulse propagating along a dispersive mi-
crostrip line with a matched load was studied by Veghte and Balanis
[5]. Using the same data given in their Fig. 4, our method generated
the same results. The comparison of our results with those of Veghte
is shown in Fig. 3. The agreement between the two sets of results
is excellent.

Example 3. To compare our results with laboratory measurements,
we employed an example of a lossless stripline terminated with
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Fig. 2. Comparison of simulation results of single dispersive microstrip
transmission line using Gu’s method and the improved S-parameter network-
ing method. Left panel: Gu’s results. Right panel: results obtained with this
method.
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Fig. 3. Comparison of simulation results of lossy dispersive microstrip

transmission line using Veghte’s method and the improved S-parameter
networking method. Left panel: Veghte’s results. Right panel: results obtained
with this method.
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Fig. 4. Comparison of measured results from single microstrip transmission
line from Schutt-Aine and Mittra, and simulations of the same line using
the improved S-parameter networking method. Left panel: measured line
responses. Right panel: simulated results obtained with this method.

advanced Schottky TTL inverters, as depicted in Fig. 7 of Schutt-
Aine and Mittra [9]. in which the transmission line is lossless and
dispersionless, and the device has been simplified but its nonlineality
retained. We used all the information presented in [9], including
electrical and geometric data, and the nonlinear I-1" curves for a
simplified model of a TTL gate (i.e., a nonlinear back biased diode
in parallel with a capacitor) provided in [9], and duplicated the wave-
forms and compared them with the photographs in Fig. 4. Overall,
good agreement between the two sets of results is demonstrated.
Example 4. In this example we compared our results with the
pumerical example of Djordjevic et gl. in [8], where the two far-
end loads are nonlinear, and the two transmission lines are lossy
and coupled. The frequency dependent behavior was simplified by
considering only skin effect loss, with the resistance proportional
to the square root of the operating frequency. This simplification
may not be accurate especially for transmission lines whose cross
sectional dimensions are on the same order of the skin depth, as a
result, dispersion was not fully addressed. Using Djordjevic’s line

Fig. 5. Comparison of simulation results of coupled lossy, dispersive mi-
crostrip transmussion lines using Djordjevic’s method and the improved
S-parameter networking method. Upper panels: Djordjevic’s results. Lower
panels: results obtained with this method.

parameters, our results agreed very well with Djordjevic er al., as
illustrated in Fig. 5.

Example 5. In all the previous examples, the combined effect of
three factors, namely, load nonlinearity, line coupling and dispersion
has never been investigated. In fact, among the three factors, only
one or two have been studied at a time. Therefore, we present
here a complete analysis of a total combination of all three factors.
First, we needed a set of data that reveals frequency dependent
characteristics (dispersion, frequency dependent losses and so on)
of a set of coupled transmission lines. This was accomplished by
the volume equivalent principle approach in a separate paper [1].
where the S-parameters and the characteristic impedance matrix of
the three coupled microstrip lines depicted schematically in the upper
two panels of Fig. 6 were obtained.

It should be noted that the structure which was simulated for this
example is a section of an actual passive test coupon designed in the
Mayo laboratory, fabricated by Honeywell Corporation using their
Thin Film Multilayer (TFML) copper-polyimide multichip module
process, and presently undergoing extensive testing at Mayo [2]. The
S-parameter and characteristic impedance matrix data derived from
the Honeywell test coupon simulations, taking coupling, losses and
dispersion into account, were then utilized in our nonlinear loads
program. A complete picture of waveform distortion and crosstalk
as a result of the combined effect of load nonlinearity, line loss,
dispersion and coupling, are illustrated in the three lower panels of
Fig. 6. No comparison from the literature is available at present;
however, measured data from our own laboratories will be available
in the near future. Finally, Fig. 7 shows the simulated S-parameter
data from the first step of this process based upon the structural
parameters of the Honeywell coupon. and S-parameters measured
with the HP 8510B network analyzer.

IV. CONCLUSIONS

In this paper, a technique based upon an improved S-parameter
and unconstrained optimization method has been described for the
analysis of the wavetront propagation characteristics of coupled lossy
and dispersive transmission lines terminated with nonlinear loads. A
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Fig. 6. Simulation results of lossy transmission lines with nonlinear loads calculated with the improved S-parameter networking method. Upper left: structural
diagram of the simulated three line structure. Upper right: schematic diagram of the simulated three line structure. Lower left: waveforms on driven line.
Lower middle: waveforms on adjacent line. Lower right: waveforms on third line.
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Fig. 7. Simulated and measured scattering parameters and structural fea-
tures for copper-polyimide Thin Film Multilayer (TFML) multichip module;
simulations based on results of Wang er al. TFML coupon fabricated by
Honeywell SSEC; measurements with HP 8510B network analyzer and
Cascade microwave probes.

modal analysis of multiple transmission lines is also discussed. As
a more general and effective method, this approach generates the
results of many previous methods as special cases.
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